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Dynamic trajectories in the vocal space: mapping basic acoustic features of
the voice with listeners' subjective perception in a public figure identification
task.

Abstract:

Using the source-filter model of voice production, previous research has utilized
multidimensional maps to quantify differences between speaker voices and explain
them in relation to various perceptual dimensions. These approaches may be
extended by integrating dynamic aspects of the voice physical signal. It is unclear
whether the informational similarity between different voices’ acoustic distributions
leads to subjective perception of such signals as being from the same person. In this
work, we examine a method for representing voices in their important acoustic
dynamic dimensions and evaluate these representations in terms of subjective
judgment. A database of speech stimuli from famous public figures (targets) was
created, along with a collection of verbatim imitations produced by professional
impersonators. Imitation pair sets were generated before and after listening to the
reference target stimulus. We quantified acoustic similarities between targets and all
imitations using two-dimensional probability maps of joint pitch and the average
inter-formant distance dimensions, which represent the source and filter stages of
vocal production, respectively. Subjective identification data were collected in a
large-scale online experiment, where participants evaluated the correspondence of
each voice stimulus with the target person. The results showed that the degree of
acoustic similarity an imitation has with the original target voice is related to the
likelihood of identifying such imitation as a genuine voice. This demonstrates that
acoustic similarity mappings are relevant for subjective voice perception and provide
a valid way to represent voices. This may open new research directions in voice
perception by integrating the dynamic trajectories of the voice’s spectral features
during production.

Keywords: source-filter model, voice imitation, dynamic vocal space,
multidimensional mapping, public figure identification, acoustic features
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Introduction

Voice production is a complex phenomenon that has been studied for decades
(Simonyan et al., 2016). This process involves a series of physiological and acoustic
mechanisms that enable the generation of the sounds that we use to communicate.
Speech contains a wealth of information beyond semantic content (Titze, 2000), for
example, information crucial for social communication such as identifying the
speaker's body size and identity (Ghazanfar & Rendall, 2008). Many characteristics
of a person, such as their gender, age, and emotional state, can be discerned even
from small samples of their voiced speech (Latinus & Belin, 2011). These signals
may allow us to form an instant impression of the speaker and infer some of their
traits even without knowing them (Lavan & McGettigan, 2023).
The source-filter model has been a cornerstone in the study of speech production.
This model separates the process into a sound production (source) stage first,
followed by a modulation stage (filter) (Fant, 1960). The source stage output is the
sound generated by the larynx, where the vocal cords are located. When air is
expelled from the lungs and passes through the vocal cords, the latter vibrate and
generate the sound wave propagating through the air medium within the vocal tract.
Its primary characteristics are amplitude (volume), timbre (a quality that allows
distinguishing between different sound sources), duration, and most importantly,
frequency. Voice sounds are typically produced by numerous frequencies, measured
in Hertz (Hz) units, which represent the number of cycles per second that the
different vibrations of a sound wave have. Importantly, at this stage, the sounds
produced by our vocal cords contain a fundamental frequency (𝑓0) and its harmonics,
where 𝑓0 is the base oscillation frequency of a sound that determines its basic pitch.
Harmonics are integer multiples of the fundamental frequency that affect its timbre
quality (Figure 1a2).
At the second stage of production, filtering, the sound produced by the cords is
modified as it passes through the vocal tract due to cavity resonance effects. The
vocal tract may change its shape and size from moment to moment, further altering
the acoustic properties of the originally generated sound over time. At any time, the
shape and configuration of the vocal tract will determine which harmonic frequency
groups that may be amplified and those which are attenuated. These important
resonances are known as formants (F1, F2, …, F5) and represent peaks in the
frequency spectrum of the human voice. The formants are essential in identifying
vowels and some consonant sounds (Peterson & Barney, 1952) (Figure 1a3).
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Figure 1 | Key mechanisms and features of voice production. (a) Sagittal section of the
vocal tract, showing the vocal cords and orofacial cavities relevant in voice production. The
lungs, diaphragm and trachea together supply, control and conduct the necessary airflow

(a1) for phonation in the larynx vocal cords (a2). The vocal cords vibrate with the incoming
airflow producing sound, which subsequently propagates at supraglottic structures (a3).

These structures include the pharynx, the oral cavity, and the nasal cavity, and their
configuration jointly which modify the sound produced by the vocal cords. (b) Signatures of

the source-filter model in the speech frequency spectrum. Top: frequency spectrum of voiced
sound at the larynx, where the vibration of the vocal cords produces regularly spaced peaks.
The fundamental frequency (𝑓0) is the lowest peak. Middle: first four resonances of the vocal

tract (peaks numbered 1-4) for an example vowel spoken by a man. Bottom: spectrum of
speech at the lips, which combines the laryngeal spectrum (top) with the vocal tract transfer
function (middle). The resulting sound contains the harmonic peaks of the 𝑓0 and a frequency
envelope shaped by the vocal tract resonances, known as formants (F1-F4). Figure 1a was

created using BioRender (https://www.biorender.com/); Figure 1b was reproduced from
Ghazanfar and Rendall (2008).

Anatomical, physiological, and functional factors impose differences in the vocal tract
that result in vocal differences among individuals (Titze, 2000; Stevens, 2000). One
of the most evident variations is the sexual dimorphism between men and women,
but voice differences may exist across different languages or dialects spoken by
individuals (Johnson, 2005). To unify these differences, Johnson (2020) proposed a
method to represent speech irrespective of vocal tract characteristics. In his
normalization approach, the average spacing between formants (ΔF) is used to
re-scale vowel formant frequencies, effectively removing acoustic differences that
may be due to differences in the vocal tract length. This method has proven effective
in standardizing vocal measures and obtaining the average separation of formants
regardless of speaker, facilitating comparisons of the acoustic properties of speech
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among individuals with different dialects or languages. This method explicitly
associates ΔF with anatomical correlates of vocal tract length, and demonstrates
usefulness in vowel classification and separation, even with few vowel tokens.
The study of voice identification and recognition may be similar to processes
involved in face recognition. In the visual domain, Valentine (1991) proposed the
hypothesis that recognizable faces may be located in a multidimensional space,
representable as points, with axes representing the dimensions in which the faces
are mainly encoded. At the center of the coordinate system, an "average face" as
obtained from experience is hypothesized where and the farther a face is from this
point, the more unusual or singular it is. Under this model, the position of each face
as a point is determined by its visual characteristics, with the distance between
points representing the similarity between pairs of faces. Following this analogy,
Belin et al. (2004) referred to the voice as the "auditory face", hypothesizing that
voices may be similarly represented in a common space. One key dimension of this
space could be vocal timbre, which is often used to distinguish one voice from
another, even if they are producing the same pitch and volume (Cleveland, 1977).
What is the most appropriate system of acoustic features to represent voices
remains an open question. The source-filter model has been previously employed to
identify psychoacoustically relevant parameters to define this space (López et al.,
2013; Baumann & Belin, 2008; Chhabra et al., 2012). In voice recognition, the
perceptual processes of discrimination may depend on whether the voices are
familiar to us (Stevenage, 2018). For example, there is evidence that the recognition
of voices to which a listener has been exposed for a considerable amount of time,
e.g., family members or famous speakers, is notably accurate even when speakers
try to disguise their voices (Hollien et al., 1982; Lavner et al., 2000; Kriegstein &
Giraud, 2004; Van Lancker et al., 1985).
In the present study, we hypothesized a vocal space whereby at each time, each
utterance from a familiar voice may be positioned on the map according to specific
acoustic properties of the dynamic speech stimulus (Figure 2). Due to familiarity,
associated with the location is a hypothesized "recognition space," within which, if
another vocal stimulus shares similar physical characteristics in this space (i.e.,
approaches closely enough), there is a chance that both voices will be identified as
from the same person.
To address this hypothesis, we invited professional impersonators to imitate
well-known voices from people famous in the Uruguayan public scene, to the best of
their ability. Imitations were produced under two different styles: first, based on the
impersonator's knowledge of a target, referred to as “caricatures”; second, as
“replicas” produced upon exposure to an original stimulus from the target with the
intent to achieve close resemblance acoustically (López et al., 2013). We
subsequently presented the original target stimuli and imitations to listeners in an
online study, for them to rate these stimuli as belonging to the target figure or not.
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Figure 2 | Representation of a generic two-dimensional voice space: In a hypothesized
two-dimensional field, each position represents a voice utterance. "T" indicates the position
of a target’s voice, while "I" is that occupied by an impersonator with his natural speech. In
this model, imitations made either through the replica ("R") or caricature ("C") methods may
effectively approach the physical vicinity that defines the perceptual area associated with the
target (orange). Shorter distances (e.g., "R" to "T") increase the probability that an imitation
will be identified with the target. The model predicts that when "R" and "C" are at the same
distance from "T," they may attain equal recognition chances, even if they occupy distinct

positions in the field.

To extend this model, we propose to consider a voice space whose locations also
inform the dynamic and variable nature of the speech signal as it unfolds over time,
via temporal histogram distributions. Here, we address the possibility that
imitation-target distances in such a low-dimensional representation may predict the
likelihood that imitations are perceived as genuine by listeners in a voice
identification. By comparing between the two imitation types,
impersonator-independent measures provided an indication of acoustic similarity and
whether it predicted which of the two more closely resembled a target voice in
participants' responses.

Methods

Subjects. Participants that were 18 years of age or older and residing in Uruguay for
at least 10 years were invited to the study. The initial pool of valid respondents
included a total of 883 participants, of whom 564 (63.87%) were female, 314
(35.56%) were male, and 7 (0.79%) did not respond about their gender. The average
age of the participants was 45.6 years (± 14.6 SD). The participants had an average
residence in the country of 45.15 years (± 14.9 SD). 764 (86.5%) of participants were
right-handed, 92 (10.4%) were left-handed, and 27 (3.1%) were ambidextrous. The
native language of the participants was predominantly Spanish with 876 (99.21%)
speakers, while 7 (0.79%) participants spoke natively Portuguese.
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From the total of initial participants, 558 completed the minimum number of
experiments required (one). Of these, 362 (64.87%) were female, 194 (34.76%)
were male, and 2 (0.35%) did not respond about their gender. The average age was
46.91 years (± 14.07 SD), and the average residence in the country was 46.36 years
(± 14.36 SD). Regarding handedness, 482 (86.37%) of the participants were
right-handed, 54 (9.96%) were left-handed, and 22 (3.94%) were ambidextrous. The
native language of the participants was predominantly Spanish, with 554 (99.28%)
speakers, while 4 (0.71%) participants spoke natively Portuguese.
The experimental procedures were approved by the Human Research Ethics
Committee (CEIH) of the Instituto de Investigaciones Biológicas “Clemente Estable”
on June 29, 2022, under registration number 013-3, and the proposal was registered
with the Ministry of Public Health on June 6, 2022 (registration number 7221843).

Stimuli. Auditory stimuli were constructed based on public domain sentence
samples obtained from 10 public figures (“targets”). These male figures are mainly
from the fields of politics, sports, and entertainment in Uruguay, namely, Alberto
Kesman (keyword “KE”), sports commentator; Guido Manini (“MA”), politician; Jaime
Roos (“RO”), musician; José Mujica (“MU”), politician; Julio María Sanguinetti (“SA”),
politician; Luis Alberto Lacalle (“LA”), politician; Luis Suárez (“SU”), football player;
Óscar Tabárez (“TA”), football coach; Pablo Bengoechea (“BE”), football coach; and
Sergio Puglia (“PU”), chef. Audio recordings of the target speakers were extracted
from publicly accessible audiovisual materials, representing normal speaking
conditions without clear emotional or stress cues during production.
In addition, imitations of these targets were recorded from five different male
professional impersonators. These recordings were obtained in person prior to this
study on separate days. Each impersonator first freely selected the individual target
figures that they were prepared to imitate. After reading the transcript of the chosen
target’s sentence, the impersonator was asked to produce a verbatim imitation
whereby they read aloud the sentence and performed an ad lib imitation based on
their skill with the target speaker (caricature condition). Subsequent to recording and
once they were reading to continue, the impersonator was presented with the audio
sample of the target’s original recording. The impersonator was then asked to
reproduce the spoken sentence as faithfully as possible (replica condition). In both
cases, impersonators were asked to retry if they did not produce the exact phrase
and were allowed to retry if they chose to do so. For replica conditions, target audios
could be re-played at the imitator’s request. Imitations were never played back to the
impersonators.
Each sentence and its audio recordings (one target plus two imitation audios) were
equally divided into 2 or 3 segments. The procedure resulted in a total of 143 audio
recording segments, including 23 target recordings, 60 caricatures, and 60 replicas.
Individual segments ranged from 4 to 10 seconds in duration.
Each recording was obtained using an Olympus recorder model VN-541OC (OM
Digital Solutions Corporation, Japan) in a low-noise, enclosed space. The audio files
were processed in MATLAB at a sampling frequency of 44100 Hz. Cosine ramps
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with a duration of 5 ms were applied at the beginning and end of all stimuli.
Additionally, prolonged silences and repeated filler words were manually removed.

Setup. An online task study was designed to be executed on desktop and mobile
devices and was developed using the lab.js platform interface (https://lab.js.org/), a
JavaScript library designed for online experiments in the cognitive and behavioral
sciences. The study was implemented and administered on the Open Lab platform
(https://open-lab.online), which also facilitated data hosting and management. For
accessibility and distribution purposes, the presently extinct domain
“http://voces.info” was created. The study was disseminated to the local population
through single radio and television announcement broadcasts. Subjects freely opted
to participate in the experiment using the devices (e.g., headsets) available to them
and on the browsers of their choice.

Task. The experiment was divided into an initial introductory practice and instruction
phase, followed by the main phase of the experiment. Subjects were then given a
third, optional final phase to provide comments and suggestions on the study at the
end of their participation. In the introductory phase, participants were first asked to
carefully read and, if they agreed and wished to participate, accept the informed
consent. They then provided demographic information, including age, years of
residence in the country, gender, dominant hand, and native language.
Subsequently, task instructions were presented corresponding to the main
experimental phase, and participants completed practice trials using three additional
public figures that were not included in the main target pool. After the practice trials,
participants could begin the main phase of the experiment, which they started by
selecting one from multiple target public figures from a main menu screen. Each
option was presented with a picture of the target public figure, an indication of task
difficulty for that target (based on the available number of imitations for that target),
and the expected duration in minutes. Target blocks ranged between 6 and 33 trials.
Selection of a target block option initiated the experimental sequence block related to
that target’s stimuli set. Upon finishing a target block, participants were redirected to
the main menu screen, where they could choose to perform another target block,
provide optional feedback, or end the session.

Experiment sequence. Upon selection of a target block, participants entered a
sequence of trials that presented all individual stimuli from the selected public figure
set, including all target, replica, and caricature audio recordings. Each trial began
with the name and image of the target figure to be identified, shown for 2 seconds
(Figure 3).

8



Figure 3 | Main experiment sequence: Representation of the main sequence of the
experiment illustrating the four steps involved in each trial.

After the visual presentation, the auditory speech stimulus was presented to the
participant. Individual speech signals were accompanied by a generic speaker icon
to indicate that audio was playing. Following the speech stimulus, a response screen
was displayed for the participant to indicate how convinced they were that the voice
they heard belonged to the person whose image was shown. Ratings were given on
a hundred-point range slider, where a value of 1 indicated the participant was
completely sure that the voice did not belong to the public figure, and a value of 100
indicated they were absolutely sure it did. A position of 50 implied that the participant
was unsure whether the voice corresponded to the target public figure or not. After
marking and validating the trial’s rating, the next trial in the sequence began. All
steps were repeated until all stimuli related to the target public figure had been
presented and rated by the participant. Upon completion of the target figure’s block
sequence, participants were shown with a final feedback slide that scored their
performance in the target block. This feedback display consisted of a variable
message, randomly selected from a pool of five options (e.g., “Your score is:”; “You
achieved”; “You scored”; “Score reached by this public figure:”; “You earned”). The
obtained score was displayed below, followed by a qualitative performance indicator
(see Table 2).

Scoring system. To assess each participant's accuracy in the identification task,
each stimulus rating contributed to the total score computation for the block as
follows: Each trial stimulus was assigned a choice value (0 or 1) and a weight value
(-1 or 1). Choice assignments depended on whether the participant predominantly
believed (rating > 50) that the stimulus was from the target, or that it was not (rating
≤ 50). Weight values indicated the actual authenticity of the voice (1 for a true target
voice, -1 for an imitation). See Table 1 for an example. Using the set of ratings,
choice values, and weight values for all trials, a d-prime (d’) value was computed for
each block. The d’ value measures the participant's ability to distinguish the true
voice signal, with greater values indicating a higher likelihood of discriminating the
voice signal from noise. Values close to 0 indicate poor ability to distinguish signal
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from noise, while lower values indicate worse-than-chance performance, which may
result from systematic response bias and/or an incorrect decision rule.

Choice 1 (score > 50) 1 (score > 50) 0 (score <= 50) 0 (score <= 50)

Weight 1 (target audio) -1 (replica or
caricature audio) 1 (target audio) -1 (replica or

caricature audio)

Results

The participant
correctly

identifies a target
audio (hit).

The participant
incorrectly

identifies an
imitation as

authentic (false
positive).

The participant
incorrectly

identifies a target
audio as (miss).

The participant
correctly

identifies an
imitation (correct

rejection).

Table 1 | Combinations of conditions and their results in audio identification. The table
illustrates the combinations of the 'choices' and 'weight' conditions and their associated

outcomes.

For each block, feedback was based on the average value of two d’ measures: one
obtained based on the participant's rating values and another from the participant's
binarized choices. To calculate the rating-based d’ measure, the block’s hit rate
(‘hitRate’) was determined by summing the weighted ratings of the authentic target
audio instances and normalizing this sum by the maximum possible points from
target instances in the block. The false alarm rate (‘faRate’) was similarly calculated
by summing the weighted ratings of the imitation audio instances.
To obtain a choice-based d’, a hit rate ‘hitRateCh’ was calculated based on the
number of binarized positive choices divided by the number of authentic target trials.
The choice-based false alarm ‘faRateCh’ was similarly computed from the number of
positive choices of imitations divided by the number of imitation trials.
In either rating- or choice-based cases, the d’ was calculated by z-transforming each
rate (using the inverse error function) and subtracting them from each other
according to the formula:

(1)

A correction was applied to constrain this value, which for scoring presentation
purposes was then multiplied by 10 and rounded. This quantitative score was
accompanied by a qualitative evaluation according to the level of achieved
discrimination (Table 2). This feedback was intended to create an engaging,
customized, and interactive experience for the participant, potentially encouraging
them to continue with another target block.
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Score obtained by participants Message shown to participants

> 21 Perfect recognition of *public figure*!
Congratulations!

18 – 21 Excellent recognition of *public figure*!

15 – 18 Very good recognition of *public figure*!

12 – 15
Good recognition of *public figure* among

their impersonators.

9 – 12
Moderate recognition of *public figure*

among their impersonators.

6 – 9
Poor recognition of *public figure* among

their impersonators.

3 – 6
Doubtful recognition of *public figure* among

their impersonators.

-3 – 3
No recognition of *public figure* among their

impersonators.

-3 – -15 You were fooled by the impersonators!

≤ -15 Review the instructions and try again.

Table 2 | Scoring chart for a target block with qualitative assessments of performance
for participant feedback.

Data processing

Speech spectral feature analyses. The raw stimulus audios, including the targets,
replicas, and caricatures, were processed and filtered using MATLAB as in
Cervantes Constantino and Caputi (2024). For each audio signal, a fixed 6-band
gammatone filterbank was applied to assess spectral variations corresponding to
male 𝑓0 and formants’ F1-F5 frequencies (Figure 4). Filterbank coefficients were
based on six centre frequencies 𝑓ci set at 146, 671, 1870, 2870, 3946, and 4869 Hz
that we defined from a previous analysis of a local public voice database (López et
al., 2013). Coefficients were estimated with the Large Time/Frequency Analysis
toolbox (Průša et al., 2014; Søndergaard et al., 2012). Sub-bandwidths equalled
thrice the critical bandwidth of the auditory filter at the corresponding 𝑓ci, and were
defined in equivalent rectangular bandwidths (Glasberg & Moore, 1990). The real
part of the filter coefficients was applied to each audio signal. Each filter output was
analyzed to obtain instantaneous frequency fi(t) and, separately, instantaneous
amplitude ai(t) content using the Hilbert method. To perform a multiband
demodulation analysis, a mean-amplitude weighted short-time estimate Fi(t) of the
instantaneous frequency fi(t) was computed per sub-band (Grimaldi & Cummins,
2008). Integration of the weighing function was approximated by using a centered
moving average with a t=25 ms window, according to the formula:
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(2)

The resulting set of discrete short-time instantaneous frequency estimates,
sometimes referred to as the pyknogram of the speech signal (Grimaldi & Cummins,
2008), was used to represent the dynamic waveform timeseries for 𝑓0 and formants
F1-F5.
The dynamic waveform for the formant dispersion ΔF measure was constructed from
k=[1,…,K] successive independent linear regression models, with K the total of time
samples in the stimulus. At the k-th sample, the formant model is:

(3)

with formant frequencies Fi taken as observations at sample k, and scaled by their
formant numbers n={1,2,3,4,5} which are taken as predictors. Model coefficient
estimation was performed via an iteratively reweighted least squares algorithm with
the bisquare weighting function (MATLAB robustfit). The regression slope served as
the measure of formant dispersion:

(4)

The seven resulting spectral contour timeseries waveforms (𝑓0, F1-F5, ΔF) were
downsampled to 1024 Hz.
To discount the spurious spectral contributions of silent periods and weak transients
in natural speech, all periods that corresponded to the signal’s envelope below a
certain threshold were automatically discarded. The threshold was set per speech
sample at the bottom quintile of the full envelope histogram for that speech signal. To
obtain the full envelope, the raw speech signal was submitted to a bank of 28
gammatone filters with ERB-spaced centre frequencies corresponding to the 52 –
4956 Hz range. From each sub-band, the envelope was extracted by taking the
magnitude value of each sample and raising it to the power of 0.6 (Vanthornhout
et al., 2018). The resulting sub-band envelopes were averaged, and this total
envelope was resampled to 1024 Hz. Below-threshold epochs were jointly discarded
in corresponding periods of the envelope and the seven spectral features.
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Figure 4 | Setup for extraction of spectral features of voiced speech. (A) Example of a
single-speaker speech phrase as presented in a trial. (B) Envelope of the speech example at

the original sampling rate. (C) Short-time estimates (mean amplitude-weighted) of
instantaneous frequency from the speech example correspond to six spectral bands

representing the fundamental frequency 𝑓0 and formants F1-F5. Silent regions (grey areas)
are not further analyzed. (D) Method of formant dispersion dynamics ΔF estimation, based

on sample-by-sample linear regression of formant frequencies. For this example, ΔF at time
T is 574 Hz. Figure adapted from Cervantes and Caputi (2024).

Subsequently, visual representations of each stimulus were created in the form of
bivariate joint probability density distributions (two-dimensional histograms) with f0
and ΔF as their dimensions (see Figure 5 for an example of a stimulus segment set).
This graphical representation allows visualizing data matrices where the values are
represented by a color scale, facilitating the identification of recurrent acoustic
patterns in the speech sample.
Here, the X-axis represents the distances between formants (representing the filter
contribution), and the Y-axis represents the fundamental frequencies (representing
the source contribution). Histograms were created with instantaneous formant
distance estimates ranging from 25 Hz to 2000 Hz in increments of 25 Hz bins, and
instantaneous fundamental frequency estimates ranging from 0 Hz to 500 Hz in
increments of 10 Hz bins. In all cases, classes of audios were compared where the
lexical content is equal, i.e., with the same vowels and consonants, but the way they
are expressed, and possibly the speakers themselves, are different.

Figure 5 | Stimulus comparison of bivariate probability distributions between target,
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caricature, and replica versions of the same sentence: 2D histograms show the joint
density of the fundamental frequencies (𝑓0) and the formant distances (ΔF) for three different

audio versions (caricature, replica, and target). Each bivariate probability distribution
illustrates the relationship between a speaker’s 𝑓0 variations during an utterance and

corresponding changes in ΔF. The color intensity in each cell represents the number of
occurrences within the defined bins, with more intense colors indicating a higher occurrence
rate. The sentence used for creating the 2D histograms (target: “SA”) reads: “Globalization
presents us with a scientific and technological explosion in constant change... political

systems that are overwhelmed....”

Representation of acoustic similarity

Acoustic differences between target and imitation stimuli (i.e., caricature versus
target, “C-T”, and replica versus target, “R-T”) were computed using the
Jensen-Shannon divergence (JSD) between the corresponding 2D probability
distribution pairs. The JSD is a symmetric and bounded measure parameter used to
compare informational similarity between probability distributions and is defined even
when both distributions have disjoint supports (as occurs, for example, when certain
(𝑓0, ΔF) combinations are present in one stimulus but not the other). A JSD of 0
indicates that the compared distributions are identical. Increasing JSD values reflect
greater dissimilarity or separation between the two distributions. After calculating the
JSD values for both R-T and C-T pairs per stimulus triplet set, we defined that set’s
acoustic difference parameter Δφ as the difference between the R-T and C-T
divergences:

(5)

This acoustic difference parameter was used to estimate which of the two imitation
modes, for a given speech segment, lies closer to the target in the (𝑓0, ΔF)
informational space. If Δφ > 0, it means that the replica imitation is acoustically
farther from the target compared to the caricature version, with the caricature audio
being more similar to the target. Conversely, when Δφ < 0, it indicates the opposite.
A Δφ of 0 indicates that both imitation modes are equally distant from the target in
this space.

Representation of perceptual similarity

Next, we defined the subjective perceptual similarity of the imitation stimuli by
subtracting the average rating attained by each imitation audio from replica and
caricature modes. As in the case of acoustic similarity, we evaluated which of the two
types of imitation modes, replica or caricature, was perceptually more convincing or
better rated by the participants. This approach also ensured that across-imitator
perceptual differences due to skill were removed. We defined the perceptual
difference parameter Δψ as:
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(6)

The result of this difference for each pair of audios can be interpreted as follows:
when Δψ is positive, the replica imitation was better rated than the caricature.
Participants were relatively more likely to attribute replica imitation to the target than
the caricature. Conversely, a negative value indicates that for a particular speech
segment, the caricature imitation was better rated than the replica. A zero value
indicates no difference in the subjective evaluation between the replica and the
caricature, with neither outstanding in terms of perceived authenticity.

Results

In the online study, target samples received the highest ratings by participants, with
an average of 79.947 ± 17.409 SD and a median of 84.794, suggesting a typical
association of these stimuli to celebrities’ actual voices, as expected. In contrast, the
caricature and replica audios received lower ratings on average (caricature 10.952 ±
8.191 SD; replica 12.335 ± 8.334). The imitation median ratings (7.501 and 8.419,
respectively) similarly indicate a consistent tendency to recognize the imitation voice
samples as belonging to other people (Figure 6).

Figure 6 | Average rating results for target and imitation stimuli: Across all target and
impersonator voices, participants were more likely to correctly identify authentic audios from

public figures’ actual voices.

The overall pattern of better recognition of genuine target audios was further
analyzed according to the public figures (Figure 7). When examined by public
figures, target audios were again perceived as the most authentic. However, for a
few public figures (e.g., MU), target identification yielded even lower average scores,
with notably higher ratings for their imitations. This may suggest that, for these public
figures, impersonations were more successfully credible in relative terms.
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Figure 7 | Results by public figure and types of audio: Average ratings for each public
figure's authentic and imitation audio samples.

Next we addressed the replica and caricature imitation modes in terms of the
acoustic variables relevant to the study. For each, we estimated the
Jensen-Shannon distance in a hypothesized source-filter (f0, ΔF) space with respect
to their target counterparts. Globally, the average acoustic distance between the
caricature and the target was 0.469 bits, while the average acoustic distance
between the replica and the target was 0.462 bits (Figures 8 and 9).

Figure 8 | Average JSD value for replica and caricature imitations with respect to
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target voice stimuli. The bars illustrate the average divergence values calculated for each
type of imitation in relation to the original voice. Replica imitations appear to show lower

divergence compared to caricature imitations.

Figure 9 | Average JSD value for replica and caricature imitations per public figure.
Acoustic closeness of imitations produced appears to vary according to the type of imitation

and the public figure, as measured by the JSD.

Using acoustic distances for each audio segment, impersonator, and target, we then
computed the acoustic difference parameter Δφ between replicas and targets and
evaluated its ability to predict perceptual differences Δψ attained between both
imitation modes. Δψ is defined as the difference in the average ratings between
replica and caricature imitation modes across all participants for a given audio
segment, impersonator, and target. A two-dimensional scatter plot was created
(Figure 10), with Δφ as the independent variable and Δψ as the dependent variable.
In the scatter plot, a total of 60 observations (audio segment, impersonator, and
target) were obtained, each shown with a standard error bar of the mean. Each
observation represents a pair of replica and caricature audios, summarizing which of
them was more similar to the target voice and which of the pair obtained a better
average rating among all subjects who participated in that target block.
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Figure 10 | Scatter plot relating acoustic and perceptual differences between imitation
modes. The abscissa represents the relative distance between the replica and the

caricature imitation modes with regards to the target voice (Δφ). The ordinate represents the
average rating difference between replicas and caricatures across participants (Δψ). Error

bars represent the standard error of the mean.

Observing the data distribution across quadrants, we can interpret that when an
observation falls predominantly into the fourth quadrant (22 observations) and the
second quadrant (20 observations), and less frequently into the third (9
observations) and first quadrants (8 observations). In other words, the pattern of
data suggests an associative negative relationship, where as Δφ increases, Δψ
tends to decrease. We assessed whether this relationship may be explained by a
linear model. A simple linear regression revealed that the overall regression was
statistically significant, the linear model was not strong (R² = 0.416, F(1, 58) = 41.39,
p = 2.60 × 10⁻⁸), explaining approximately 41.6% of the variance in Δψ.
Nevertheless, it was found that Δφ significantly predicted Δψ (β = -74.2810, p <
0.001), confirming a negative relationship between the two variables. The significant
negative slope indicates that as Δφ increases, Δψ tends to decrease. Additionally,
the intercept was statistically significant (β₀ = -3.3643, p = 0.008).
To further explore the relationship between Δφ and Δψ without assuming linearity, a
Spearman's rank correlation analysis was performed. This analysis indicated a
negative monotonic correlation (ρ = -0.634, p = 5.23 × 10⁻⁸), suggesting that as Δφ
increases, Δψ tends to decrease in a consistent manner. The significant negative
correlation confirms an overall negative association between the two variables.
We note that in these results, the trend line crosses the X-axis at approximately
-0.0453 bits, representing the point of subjective equality (Δψ = 0), where
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participants did not favor either the replica or caricature options perceptually. This
acoustic difference parameter level may be interpreted in terms of a slight closeness
of replicas and distance of caricatures from the target, with participants still
equivalently rating both modes. On the other hand, as the trend line crosses the
Y-axis at approximately -3.3643%, which corresponds to Δφ = 0 (where the
estimated acoustic distances of the replica and caricature are the same with respect
to the target), it suggests that participants may tend to perceive the caricature
imitation modes as slightly more convincing than replicas given the same level of
separation from the target. Whether these biases are significant is a matter that will
require further replication and investigation in future work, for example, through the
use of psychometric function models, which describe how the probability of a
response varies as a function of stimulus parameters.

Discussion

What specific acoustic parameters are most prominent in voice perception and
identification remains unclear. Numerous studies have used the source-filter model
as a starting point to identify the relevant acoustic properties for voice perception in
relation to the organization of voices in perceptual space. This study aimed to
construct a two-dimensional representation of a voice space with physical
dimensions based on the source-filter model. Acoustic distance measures between
voice stimuli represented in this space were defined in terms of information units,
and the corresponding perceptual distances determined by listeners were estimated
through an online study. The findings indicate a correspondence between the
acoustic and perceptual distances, where imitations that are acoustically closer to a
familiar target predict higher chances of identification as such. Therefore, the results
suggest a familiar voice space where perceptual identification may be based on, at
least, acoustic characteristics consistent with the source-filter model. As a result,
emitters with an ability to adjust their voice in these parameters to approximate an
intended target may achieve an increased likelihood of being perceived as that
person.
In the present study, we examined a two-dimensional model of perceptual
identification based on familiar male voices. In this regard, speaker familiarity is a
factor that may positively influence voice perception (Lavan et al., 2021; Stevenage,
2018). Moreover, recognition increases when the speech is in the same language as
the listener’s (Wester, 2012). Prior research addressing the typical dimensions for
listeners to map perceptually the acoustic characteristics of speaker voices, has
been motivated by determining the basic acoustic characteristics of the voice that
efficiently represent spatial relationships in perceptual space. It is noteworthy that so
far, these mappings, whose dimensions may be typically constructed in frequency
units or their derivates, for simplicity usually represent voices as static points, which
discards many of the speech dynamic properties. Generally, 𝑓0 has been a
consistently used dimension in these studies as it plays a critical role as the lowest
frequency of the vocal spectrum that is to be shaped through the vocal tract
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resonances. By contrast, the complementary dimensions to pitch have been more
varied (Baumann y Belin, 2008; Chhabra et al., 2012; López et al., 2013; Stevenage
et al., 2023), and it remains unclear which is the most optimal space with the fewest
possible dimensions.
In our study, we extended upon the original work by López et al. (2013), where a
perceptual space for familiar speaker identification was mapped to acoustic features
from the vocal tract, particularly the dispersion between the upper formants. In that
study, the perceptual judgments of voice similarity, i.e. discriminating between voice
pairs, were found to be by contrast more related to acoustic parameters associated
with the vocal cords, such as fundamental frequency and its variability. Using
behavioral responses, López et al. obtained a dimension map based only on the
acoustic properties they deemed most relevant for constructing that space.
Unlike the present study, which achieved the correlation of the existence of a space
where the acoustic properties of the vocal cords and the vocal tract coexist with the
listeners' subjective perception, López et al. used participants' perceptions to identify
the acoustic properties necessary for the construction of the vocal space.
Additionally, their study distinguished between replica and caricature imitation mode
suggesting that caricatures are more effective in evoking the speaker's identity, while
replicas achieve greater acoustic similarity. They further suggested that different
acoustic properties may be exploited depending on the type of imitation: while
caricatures may emphasize the characteristics of the vocal tract to highlight identity,
replicas may focus on the characteristics of the vocal cords to achieve greater
similarity. In the present work, we suggest a unified framework where acoustic
properties from both the source and filter stages of production may be jointly
represented in the perceptual characterization of acoustic distances, regardless of
imitation mode.
In a related study, Baumann and Belin (2008) addressed the acoustic features that
subjects may use to discriminate speakers, using different vowel sound stimuli. A
two-dimensional space, based on 𝑓0 and the separation between the upper formants
(F5 – F4), was found to account for perceptual difference judgments of unfamiliar
voices, highlighting the joint contribution of the larynx and vocal tract in voice
identification. Another study (Chhabra et al., 2012) similarly found a two-dimensional
vocal space, based on 𝑓0 and formant dispersion (Hz), to be perceptually relevant in
a voice discrimination task, and such organization was found to be also effective for
listeners with schizophrenia. In another study (Stevenage et al., 2023), the acoustic
differences between public figure targets and their impersonators were addressed
using a multidimensional combination of acoustic features, including 𝑓0, the standard
deviation of 𝑓0, the harmonic-to-noise ratio, jitter, shimmer, and F4. In this case,
however, the feature sets achieved by impersonators were not found to be
systematically closer to the targets than control voices in acoustic space. However,
despite the lack of significant acoustic differences, listeners were able to correctly
discriminate voices across conditions, suggesting other perceptual and cognitive
factors may play an important role in the task. In addition, the findings may illustrate
the limitations of ‘fixed-point’ static in multidimensional characterizations of voiced
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speech. In contrast to the previous studies, the present work addresses the dynamic
time-varying distributions defined by the trajectory of voiced speech, through the use
of joint probability distributions. Our data suggest that by measuring the informational
differences between distributions, spatial relationships in acoustic feature space may
be expressed to define associated perceptual spaces.

Limitations

In this self-administered online study, participants performed the task in an
unsupervised manner using their own interface and audio playback devices. For this
reason, the level of the participant's attention is an uncontrolled variable as it would
be in an on-site study. The environmental conditions, including distractors or noise,
were also not controlled.
In addition, variability on the acoustic features may be expected across instances
from the same speaker, but in the current design this source of uncertainty is not
accounted for. This relates to the estimated variability within each speaker because,
in practice, voices are dynamic and may change according to their context (Lavan
et al., 2019; Stevenage et al., 2023).

Conclusions

The present work introduces a novel approach to vocal perceptual spaces through a
spatial mapping that is based on source-filter spectral properties of a voice signal,
using informational relationships to assess acoustic distance, or similarity. The
approach represents dynamic and time-varying acoustic feature distributions of
familiar voices and their imitations, to inform perceptual identification judgments in
relation to such voice space. We demonstrate that such acoustic similarity mappings
are relevant in subjective voice perception, suggesting that these mappings
represent a valid means for representing voices. These findings may open new
avenues for vocal perception research through the creation of more precisely defined
dynamic trajectories in acoustic feature space.
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